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Abstract—Systematically analyzing the dynamic behaviors of
social networks is one of the central topic in understanding
the structure of large networks. In particular, the information
cascade [1] introduced by Banerjee provides great insights in
characterizing the opinion exchanging between network agents.
Traditionally studies of information cascades focus on the
Bayesian models, which are often difficult to model real world
situations. In this paper, we attempt to study the information
cascades from a non-Bayesian point of view. In particular, we
consider a sequential decision model but with an arbitrary
decision rule. We show that the fraction of agents in a network
making any specific decision will converge. Thus, the agents in
the network reach a sort of consensus with high probability,
which allows us to predict the herd behaviors. In addition,
we also apply our non-Bayesian model to different network
structures, such as ER model and network with communities, in
which the affect of information cascades are quantified. Finally,
we simulate the decision process for multiple communities,
which justifies our proposed model to comprehend real world
complex user behaviors and dynamics.

I. INTRODUCTION

Learning and predicting how the decentralized opinions
of a large number of individuals are aggregated or cascaded
is an important topic in studying the opinion dynamics in
a social network. In a social network, it is usually assumed
that the agents can acquire knowledges from environmental
observables that are generated from the underlying state of
world, and then perform social activities or decisions to af-
fect the behaviors of the network, according to the available
knowledges as well as agents’ decision logics. For instance,
in elections, the voters can observe the political platform
announced by the candidates, the related contents from the
news media, and the political tendency of their neighbor-
hoods. Then, the electors decide who to vote according to
their personal experiences and logics. This class of obser-
vation and decision processes are particularly suitable for
modeling real world phenomenons. However, in practice, the
observation and decision processes are dynamically changed
through the underlying environmental signals, and the agents
are mutually affected with each other by their activities. This
causes extraordinary difficulties to thoroughly understand the
dynamic structure of the herd behaviors in a social network,
and hence prevent the prediction of future network behaviors
from possible.

In this paper, our primary purpose is to develop a mathe-
matical social learning model that not only allows analytical
analyzations of the dynamic structures in social networks,
but also capturing the critical features of the decision logics
of human beings. Among literatures on social learning, the
pioneer efforts are probably the Bayesian decision model

proposed by Banerjee [1] and Bikhchandani, Hirshleifer,
and Welch [2]. In Banerjee’s work, he considered the model
where agents are allowed to observe the decision made by
all previous agents and then make their decisions sequen-
tially. In addition, the agents follow the Bayesian strategy
as their decision logic. With this simple social network
model, Banerjee observes that, while every agent makes their
decision rationally (Bayesian), the effect of observing other
agents’ actions may cause irrational decision results. This ef-
fect was termed as the information cascade [3]. After [1], the
researches that aim to profound the insights of information
cascades are primarily focusing on two directions. In [4]-
[8], the authors extended the ordinary Bayesian decision
model in [1] to more general payoff and cost functions.
In addition, the authors in [9]-[11] considers the topology
and connecting structure of the network in implementing
the sequential decision, in which the distributed opinion
aggregations under Bayesian decision rules are investigated.

On the other hand, comparing to the studies of the
Bayesian models, the information cascades under general
non-Bayesian decision rules have a relatively limited un-
derstanding [12]. In a sense, the Bayesian social learning
provides a heuristic framework for analyzing the dynamic
structure of social networks, which can be served as the
natural benchmark for understanding the epidemic of herd
behavior. However, the Bayesian model is often difficult
to model realistic human decision strategies, since it has
been shown in many literatures that the decision logic of
human beings tends to follow rather irrational and stochastic
mechanisms, e.g., see [13]-[18]. In addition, it was sug-
gested in [19] that when social pressures are great, the
decision of herds may act irrationally, namely, make the
suboptimal decisions given the available information. These
evidences demonstrate that Bayesian models is insufficient
to model the decision patterns of human beings. Therefore,
while Bayesian social learning often provides clean analytic
results, these results may not be suitable for real world
phenomenon of dynamics.

Facing these difficulties, in this paper, we propose a new
class of non-Bayesian model that addresses the nature of
human perceptions. Specifically, we consider the sequential
decision process for n agents, where each agent i can first
observe the decisions of previous agents and then make
a binary decision xi ∈ {0, 1}. Instead of employing the
conventional Bayesian decision policy, we introduce here
a two-step decision process to model the nature of human
decisions. First, we model the observation mechanism of
agents as a pre-decision filter Ri = 1

i−1

∑i−1
j=1 Si,j(xj),

which takes the observables x1, . . . , xi−1 as the input. Here,
Si,j’s are some stochastic functions that map {0, 1} to R.
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Fig. 1. The human decision model.

In other words, while the agent i is allowed to observe
x1, . . . , xi−1, we assume that most important information
that is aware by agent i through the human perception system
is the filtered observation Ri. This pre-decision filter model
is motivated by the psychological fact that when receiving
high dimensional signals, people tend to have the selective
attention and consider the signals as low dimensional objects
that may be thought of as projecting original high dimen-
sional signals to low dimension spaces. After receiving the
filter output Ri, the agents then make a randomized binary
decision according to this output by their personal decision
logics. Rigorously, we can describe this stochastic decision
process as a Bernoulli random process with the parameter
u(Ri), where u is an utility function that models the decision
patterns of agents. Figure 1 illustrates this decision model. In
this paper, our goal is to study the asymptotic properties of
our social dynamic model. Specifically, we are interested in
understanding that for a large amount of agents, what is the
fraction of agents, who will make a specific decision under
the sequential decision process. This asymptotic behavior
can be interpreted as the decentralized information aggre-
gation from a large population that considers the dynamic
social interactions among agents.

In order to study the structure of the asymptotic decision
fraction, in this paper we investigate two particularly impor-
tant classes of filters. First, we consider the linear filters with
deterministic and identical coefficients, i.e., Si,j(xj) = xj ,
for all i, j. In this case, the filtered output Ri corresponds to
the fraction of the agents among the first i− 1 agents, who
make the decision “1”. In other words, we are assuming
that the most significant information being aware by the
agents regarding to previous decisions is the fraction of
decisions made by previous agents. This characterizes a
key feature of human decisions about social activities in
current human societies. The most illustrative example is
the opinion polls in elections, where the electors can only
access the support rate of each candidate, but has no clue
of whether some group of people support certain candidate
or not. Second, we consider the stochastic filters, in which
for all i and j, the Si,j(0) and Si,j(1) are i.i.d. according
to some probability distributions fS0 and fS1 . This i.i.d.
stochastic filter, on the other hand, deals with a broad range
of network structures, such as the network connectivity,
degree distributions, and agents with different communities.
For example, the famous Erdös-Rényi (ER) network model,
where each agent is assumed to observe each of the previous
agent with probability q, can be modeled in our setup by
appropriately designing the distributions fS0 and fS1 . The
detail of this design will be presented in section III-B.

The study of our social dynamic model in general provides
the fundamental characterizations and quantifications for
the dynamics of information aggregations and cascades. In
particular, we show in section III that for a large population,
the opinions of of the agents will reach a consensus such
that the fraction of the agents making the same decision will

x1 x2 x3 x4

ω1

· · · · · ·

ω2 ω3 ω4

x1 x2 x3

x1 x2

x1

Fig. 2. The sequential decision model, where the links denote the
observability of the decisions from previous agents.

approach to a convergent set, which depends on the utility
functions of the agents. This illustrates how the decisions
of previous agents can affect the entire populations. In
addition, our result provides a quantitive characterization of
information cascades in herd decision for arbitrary decision
strategies, and hence sheds the light on understanding the
dynamic structures of the information cascades, and is
potentially helpful in designing social interactive systems.

The rest of this paper is organized as follows. In section II,
we introduce the setup of our social dynamic model and
the problems formulation. Then, we consider in section III
how the decisions of the agents in the social network can
converge to a consensus, in which we show that the fraction
of agents making the same decision will approach to a
convergent set. We also study how the opinion can be
exchanged between different communities via our model
in section III-C. Finally, the simulations of our model is
provides in section IV, which suggests how to apply our
model to practical social network problems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we investigate the scenario that there are n
agents in a social network, and the agents aim to sequentially
make a binary decision xi from {0, 1}. In order to make such
decisions, the agents are allowed to observe two sorts of
informations. First, it is assumed that each agent i observes
an outcome ωi from the environment or the ambient space,
where the outcomes ωi’s are i.i.d. drawn from a probability
density function fΩ(ω) defined on an outcome space Ω.
Second, we assume that each agent i can also observe
the decisions made by previous agents1 1, 2, . . . , i − 1.
Here, we denote the observable previous decisions as an
i − 1 dimensional binary vector x(i) = {x1, . . . , xi−1} ∈
{0, 1}i−1. Figure 2 demonstrates the observation structure
of this model. Then, each agent randomly makes a binary
decision according to a utility function uθi that maps the
observations of agent i to a probability distribution on {0, 1}.
Here, θi ∈ Θ is a parameter that characterizes the behavior
pattern of the agent i. Note that different decision logics of
the agents are characterized by different utility functions that
are indexed by θi. This parameter also allows us to model
different communities of agents. In particular, we assume
that agent i behaves as pattern θi with probability fΘ(θi),
where fΘ is a probability density function on Θ, and θi’s
are also mutually independent for different i.

In order to model the nature of human decision and also
simplify the problem, we would like to assume that the
observable vector x(i) is first passed through a pre-decision
filter with the filter output Ri = 1

i−1

∑i−1
j=1 Si,j(xj). Then,

1For the first agent, we assume the decision is made as “1” with
probability p, for some p ∈ [0, 1].
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after observing Ri and ωi, the randomized decision rule for
agent i is given as

xi =

{
1, with probability uθi(Ri, ωi)
0, with probability 1− uθi(Ri, ωi),

(1)

where uθi : R × Ω 7→ [0, 1] is the utility function that
characterizes the decision pattern of the agent i w.r.t. the
observations. Note that here, we did not assume the utility
function to take any particular form, but can be arbitrary
utility functions. This allows us to deal with many real world
problems, where the utility functions can be trained corre-
spondingly. In addition, the randomized decision rule (1)
adopted in our setup considers both the irrational and
stochastic nature of human decisions, as well as other
random factors and events from the environment that are
usually very difficult to be precisely modeled. Therefore, our
system setup practically models a broad range of decision
processes in social networks.

Now, we would like to simplify the decision strategy (1)
for operational convenience. First, note that the outcome
ωi and behavior pattern θi are independently drawn from
the probability distributions fΩ and fΘ, so the probability
of making the decision “1” for each agent i given the
observation Ri can be represented as a simplified utility
function u : [0, 1] 7→ [0, 1] that is specified by

u(Ri) =

∫
θ∈Θ

∫
ω∈Ω

uθ(Ri, ω)fΩ(ω)fΘ(θ)dωdθ,

For convenience, we assume u to be a continuous function.
In addition, the randomized decision rule of each agent i
can be reduced to:

xi =

{
1, with probability u(Ri)
0, with probability 1− u(Ri).

(2)

The simplified decision rule (2) in effect averages out
different decision patterns w.r.t. θi. Thus, we can virtually
think of each agent operating with the same decision logic,
but still have to keep in mind that physically the group of
agents are composed of different types.

The main focus of this paper is to investigate the de-
centralized information aggregation and information cascade
for the proposed social dynamic model (2). Specifically, we
are interested in studying the fraction of agents in a large
number of populations, who will make a specific decision.
For this purpose, we demonstrate the information cascade
and aggregation structure of our model for two particularly
important classes of filters: (i) the deterministic filter with
all Si,j(xj) = xj , and (ii) the stochastic filter, where each
Si,j(k) is i.i.d. according some distribution fSk , for k = 0, 1.
For the first case, the filtered output Ri = 1

i−1

∑i−1
j=1 xj

is the fraction of agents making the decision “1”. Thus,
the utility function u(r) is a function that maps the closed
interval [0, 1] to itself. On the other hand, for the stochastic
filter, the linear output can be an arbitrary real number, and
hence the utility function is u : R 7→ [0, 1]. In section III,
we will show the information cascade structure for these two
scenarios.

III. THE INFORMATION CASCADES FOR ARBITRARY
UTILITY FUNCTIONS

In this section, we consider the social dynamic model
with the decision rule (2) with the deterministic filter, as

u(R)

1

1
F(u)

F+(u)

F+
ε (u)2ε 2ε

Fig. 3. The geometrical illustration of F(u) and F+(u).

well as the stochastic filter. In particular, we would like to
address the question that for a large number of agents, after
sequentially making their decisions, what will be the fraction
of agents making a specific decision.

A. The Deterministic Filter
First, let us consider the deterministic filter with the

filtered output Ri = 1
i−1

∑i−1
j=1 xj . We want to investigate

the asymptotic behavior of the fraction of agents making
decision “1” in our model. Before proceeding to more
details, we would like to first introduce some definitions.

Definition 1. The fixed-point set F(u) ⊆ [0, 1] for an utility
function u is defined as the set of points F(u) = {r ∈ [0, 1] :
u(r) = r}.

Since u(r) is a smooth function, by the intermediate value
theorem, the equation u(r) = r has at least one solution.
Thus, F(u) can never be an empty set. In particular, we are
more interested in a specific subset in F(u).

Definition 2. The positive fixed-point set F+(u) ⊆ F(u) is
defined as the set of points r ∈ F(u), such that the first order
derivative u′(r) ≤ 1. In addition, for an ε > 0, we define the
ε-neighborhood of a positive fixed-point set F+(u), denoted
as F+

ε (u), as the set of points r ∈ [0, 1], such that for some
r′ ∈ F+(u), it holds for |r − r′| < ε.

Figure 3 illustrates the geometrical meaning of F(u),
F+(u), and F+

ε (u). Now, we are ready to state the main
theorem of this section. The following theorem claims that
the fraction of agents making the decision “1” converges to
the points in the negative fixed-point set F+(u), when the
amount of agents approaches infinity.

Theorem 1. Suppose that there are n agents and each agent
i sequentially makes a binary decision Xi following the
decision rule (2), and we denote the fraction of the agents
making decision “1” as a random variable Rn. Then, for
any fixed t and ε > 0, the random variable Rn converges
to F+

ε (u) with probability 1, when n→∞. i.e.,

lim
n→∞

P
[
Rn ∈ F+

ε (u)
]

= 1, ∀ε > 0. (3)

Due to the space limitations, we will omit the technical
proof, but present the intuition and idea behind this Theorem
as follows. Suppose that after agent i making the decision,
there are i · ri agents making decision “1”. Then, the agent
i + 1 will make the decision “1” with probability u(ri).
Now, if u(ri) is greater than ri, then the ratio ri+1 will be
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Fig. 4. The convergence of herd opinions.

more likely greater than ri, since the probability of making
decision “1” for agent i + 1 is greater than ri. Therefore,
agent i + 1’s decision will draw the ratio ri+1 away from
ri. Similarly, if u(ri) is less than ri, then ri+1 will have the
tendency to be less than ri. With this intuition, we can see
that if at some point the ratio r of agents making decision
“1” is greater than u(r), then as shown in Figure 4, the
decisions of later agents will draw the ratio toward the fixed
point r∗ that has the slope u′(r∗) no greater than 1. On
the other hand, if u(r) > r, the later decisions will pull the
ratio toward that fixed point. Moreover, this also provides the
intuition of why the fixed points with slopes greater than
1 can not be convergent points: even at some point, the
empirical ratio is close to a fixed point with slope greater
than 1, the laters decisions of agents will at end draw the
ratio away from that fixed point.
Remark 1. Theorem 1 demonstrates the potential of predict-
ing herd behavior, and more importantly, adopting the herd
behavior to match certain desired pattern in a social network.
For instance, if it is desirable to have fewer decision “1”
from the agents, i.e., to have the convergence appear at point
A illustrated in Figure 4, then one shall adopt some agents
to make decision “0” in the beginning stage, such that the
ratio of agents making decision “1” is located in the region
I or II. Then, the information cascades start to build up,,
which leads the convergence of the ratio to happen at the
desired place. This observation can be particularly useful in
setting up the strategies to win elections, or constituting the
political policy for governments.

B. The Stochastic Filter

Now, let us consider the case, where the Si,j(0) and
Si,j(1) are i.i.d. random variables, for all i, j, and distributed
with some probability distributions fS0 and fS1 . This sce-
nario is motivated from that in a practical social network,
the agents are usually only interacting with a small fraction
of other agents in the network. Therefore, there exists a
network topology that indicates the connection between
agents. In particular, the most widely adopted stochastic
network model in network science is the Erdös-Rényi (ER)
network model, which assumes that the connection between
any pair of agents exists with the probability q > 0, and is
independent to other pair of agents. In order to adopt the ER

network model to our social dynamic model, we assume that
each agent can now observe each previous agent’s decision
only independently with probability q. Then, the filtered
output with the ER network topology can be written as

Ri =
1

L

L∑
j=1

Si,ij (Xij ) (4)

where i1, . . . , iL are the agents that the user i can observe.
Here, L is a random variable distributed as the binomial
distribution with the parameter q.

Now, we are interested in the asympototic properties of
the information cascades with the network topology. For this
purpose, let us first consider the distribution of Ri, when i
grows large. Note that L is a binomial random variable,
hence for large i, L is concentrated to the mean i · q.
Mathematically, for any ε > 0, there exists a γ1(ε) > 0
independent to i, such that for large enough i,

P [|L− i · q| ≥ ε] ≤ exp (−γ1(ε) · i) . (5)

Now, suppose that within the first i−1 agents, the fraction of
the agents making the decision “1” is ρi. Then, the sum (4)
can be written as

Ri =
1

L

L∑
j=1

Sj ,

where Sj is the random variable that can be written as

Sj = ρi · S1 + (1− ρi) · S0,

and S1, S0 are the random variables with the probability
distributions fS1 and fS0 . Therefore, applying the law of
large number to (5), we have for a fixed L and any ε > 0,
there exists a γ2(ε) > 0, such that for large enough i,

P [|Ri − µ(ρi)| ≥ ε] ≤ exp (−γ2(ε) · L) , (6)

where

µ(ρi) = ρi · E[S1] + (1− ρi) · E[S0] (7)

is the mean of Sj . Therefore, from (5) and (6), we can see
that for any ε > 0 there exists a γ(ε) > 0, such that

P [|Ri − µ(ρi)| ≤ ε] ≥ 1− exp (−γ(ε) · i) . (8)

In other words, for large i, Ri is concentrated to µ(ρ) given
by (7). Thus, the decision rule (2) can now be adopted with
the ER network model as

xi =

{
1, with probability u∗(ρi)
0, with probability 1− u∗(ρi) (9)

where u∗(ρi) = u(µ(ρi)) is the adopted utility function with
the network topology. From (9), we can come up with a
similar asymptotic convergence result in the social network
with the ER network model.

Theorem 2. Suppose that there are n agents and each agent
i sequentially makes a binary decision Xi following the
decision rule (2). In addition, we assume that every agent
can observe each of the previous agent independently with
probability q, and denote the fraction of the agents making
decision “1” as a random variable Rn, then,

lim
n→∞

P
[
Rn ∈ F+

ε (u∗)
]

= 1, ∀ε > 0, (10)
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where u∗(ρi) = u(µ(ρi)) is the adopted utility function.

Remark 2. It turns out that the convergence of Rn only
depends on the adopted utility function u∗, but independent
to the connecting probability q in the ER model. This result
can be interpreted as follows. Note that in the ER model, for
any q that is fixed w.r.t. to the size of the network nodes n,
the probability of existing a giant component approaches to
1 as n grows. Therefore, the network can be considered as
almost connected, when q is some fixed quantity. Therefore,
our result says that as far as the network is connected, the
opinion of each agent can be propagated and shared by other
agents, and hence the consensus can be reached according to
their behavior pattern u∗. On the other hand, the connecting
probability q can indeed affect the convergence rate in our
model. This can be seen from (5) that for small q, each agent
can typically observe fewer previous agents, and hence the
right hand side of (6) will decade slower. This result also
makes sense because when q is small, the degrees of the
network nodes becomes small (while still connected). Thus,
the information will be more difficult to be shared among
agents, and the information cascading speed will be slow.

C. Information Cascading Model With Communities
Now, let us consider that there are M communities in the

social network, and each agent belongs to one community.
We assume that each agent belongs to the community m
with probability pm, which is independent to other agents. In
addition, to model the network topological structure, we also
assume that an agent i in the community m1 can observe
the decision of an agent j with probability qm1m2

, if the
agent j belongs to the community m2. Our goal is again
to characterize the fraction of agents making the decision
“1”, for a large number of agents with the community and
network topology. For the sake convenience, we consider in
this section the deterministic filter with binary decision space
as in section III-A, where the results can be easily carried
to the stochastic filter case. Moreover, we assume that an
agent i in the community m make the decision “1” with
probability u(m)(Ri), where Ri is the fraction of the agents
among the observable agents of the agent i, who make the
decision “1”, and u(m) is the utility function as in (2). This
specifies the behavior patterns of different communities.

Now, let us consider the first n agents, who are in the
community m and have made their decisions. We write
the fraction of agents, who make the decision “1” among
these n agents, as Rn(m). Then, following similar large
deviation arguments as in section III-B, we can find that as
n approaches to infinity, Rn(1), . . . , Rn(M) convergence
with probability 1 to the region R = {R(m)}Mm=1, which
satisfies that for all m ≤M ,

(i) u(m)

(
M∑

m′=1

Q
(m)
m′ R(m′)

)
= R(m),

(ii) u
′(m)

(
M∑

m′=1

Q
(m)
m′ R(m′)

)
≤
(
Q

(m)
m

)−1

,

where

Q
(m)
m′ =

pm′ · qm,m′∑M
m′=1 pm′ · qm,m′

. (11)

In fact, Q(m)
m′ can be interpreted as the fraction of agents

among all the observed agents of an agent i in community

m, that is in community m′. Thus, the above constraint
(i) can be understood as the convergent points similar to
Theorem 1, but adjusted according to the community and
network structure. Moreover, from (11), we can see that
Q

(m)
m′ is proportional to qm,m′ . This tells that when the

agents in a community m′ have a great visibility by the
agents in another community m, the behavior pattern of the
agents in m will be significantly affected by the agents in
m′. In addition, this effect can be quantified by the equation
(i). In a nutshell, the region R quantifies how the decision
patterns of the agents in different communities can affect
with each other, and hence allows the prediction of the herd
behaviors in different communities.

IV. EXPERIMENTAL SIMULATIONS

In this section, we consider agents belonging to two com-
munities 1 and 2, such that the agents in community 1 can
observe the agents in the same community with probability
q11 = 1, and the agents in community B with probability
q12 = 0.5, and similarly q22 = 1 and q21 = 0.5. Then,
the normalized observing fractions of agents Q(1)

1 = 2/3,
Q

(2)
1 = 1/3, Q(1)

2 = 1/3, and Q
(2)
2 = 2/3. In addition,

we employ the sigmoid functions as the decision pattern
of the agents in community 1, since the sigmoid function
appropriately model the humans’ decision logics in many
real world problems as suggested in [20]. Specifically, we
assume the utility function u(1) of the decision pattern of
the agents in the first community as

u(1)(r) =
1

1 + exp(−7(r − 0.5))
.

Moreover, we take u(2)(r) = u(1)(1 − r) to model the
scenario, where the agents in community 2 tends to have
counter opinions from community 1. The utility functions of
communities 1 and 2 are illustrated as in Figure 5(a), where
the utility functions show a completely different nature in
making decisions.

We run the sequential decision process for agents in two
communities and consider the fraction of agents making the
decision “1” among the first k agents, for k = 1, . . . , 1000,
in these two communities. The simulation result is shown in
Figure 5(b). From Figure 5(b), we can see that the fraction
agents making decision “1” for the community 1 converges
to about 0.728 and the fraction converges to about 0.437 for
the community 2. This is a point in the convergent region
R that satisfies (i) and (ii) in section III-C with the set of
Q

(m′)
m , u(1) and u(2) specified in this section. Moreover, we

can also see that the convergence of the fractions to the
convergent point is quite fast (close to the convergent point
at around 50 agents). Therefore, while we assume a large
number of agents to derive the results in previous sections,
the simulation shows that our results can also apply to a
median size social network. Thus, the convergent region
we derived in section III-C is in fact quite accurate and
also robust in predicting herd behaviors in practical social
networks.

Finally, Figure 5(c) plots the fraction of the agents in com-
munity 1 making the decision “1” w.r.t. different q12, i.e.,
different probability of observing the agents in community
2 (we set q12 = q21, and q11 = q22 = 1). This figure shows
that without observing agents in community 2 (q12 = 0), the
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(a)

(b)

(c)

Fig. 5. (a) The utility functions for 2 communities. (b) The fraction of
decision “1” w.r.t. the number of agents. (c) The fraction of agents making
decision “1” w.r.t. different q12.

agents in community 1 making decision “1” with the fraction
0.962, which is the solution of r = u(1)(r). However, as q12

grows, the opinions of the agents in community 1 are more
and more affected by the counter opinions from community
2, and the fraction of agents making decision “1” goes down.
This result is intuitive, while our results in this paper provide
a quantitive way to characterize how much the opinions in
one community can affect the other.

V. CONCLUSIONS

In this paper, we proposed a novel model to study social
dynamic problems. We consider the sequential decision
scenario that happens in many real world situation such as
the committee meeting. We show that in a large population,
the fraction of agent making a specific decision will converge
to a set, which depends on the decision utility function
of the agents. In addition, we also present the extension

of our model to widely adopted network models, such as
the ER network model and decision with communities. Our
results illustrates that how the decision made by previous
agents can affect the decisions of the entire population, and
how the opinions of one community can affect the other
community. This provides a quantitive view for information
cascades, which can be potentially useful in understanding
the dynamics of social networks.
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